Confronting the Challenge of Managing Moderate-to-Severe Atopic Dermatitis
Integrating Atopic Dermatitis Diagnosis and Treatment Guidelines with Health Plan Algorithms to Optimize Outcomes

John Fox, MD, MHA
Senior Medical Director
Associate Vice President of Medical Affairs
Priority Health
Learning Objectives

• Align diagnosis and treatment strategies with evidence-based guidelines to optimize atopic dermatitis (AD) treatment outcomes

• Apply methods to improve adherence to AD treatment
Atopic Dermatitis: The Most Common Inflammatory Skin Disease

- Chronic, relapsing-remitting course characterized by persistent pruritus¹
- Affects >30 million Americans²
 - ~13% of children³
 - ~1/3 with moderate to severe disease³
 - 2-3% of adults¹
 - Severity varies widely in adults¹
- Multifactorial etiology; commonly associated with asthma and allergies¹
- High negative impact on quality of life¹

Clinical Presentation: AD Impacts More Than the Skin

- Food allergies
- Rhino-conjunctivitis
- Asthma

- Impaired sleep
- Absenteeism
- Presenteeism

- Difficulty falling asleep
- Frequent awakenings

Economic Burden: Increased Use of Health Care Resources

- A diagnosis of AD is associated with increased physician visits, emergency department visits, and hospitalizations\(^1\)
 - 75% of patients with AD visited a doctor at least once in the last year specifically for their AD\(^1\)

- Patients with AD had an average of $371 higher out-of-pocket costs per person/year vs those without AD\(^1\)

- AD causes the highest disability-adjusted life-years among all skin disorders\(^1\)
 - AD patients 53% more likely to have >6 lost workdays vs those without AD\(^2\)

Prognosis

• In general, individual outcomes are difficult to predict
 • Spontaneous resolution in 40-60% of infants, especially with mild disease
 • 20% of cases resolve by adolescence

• Features of AD associated with a poor prognosis include
 • Family history of AD
 • Early age of onset
 • Body surface area involved
 • Atopy
Unmet Needs

- Need for disease severity and quality of life scales for use in clinical practice
 - >20 instruments to assess disease severity in clinical trials, but these have limited clinical application

- No universally accepted biomarker to define disease stages, severity, or clinical success

- Limited use of effective and safe therapeutic options for long-term treatment of moderate-to-severe disease

- Due to a lack of comparative data, treatment effects of existing therapies cannot be readily compared

Physician Management of AD

Mild Disease

*Managed by pediatricians and primary care providers*¹

Moderate-to-Severe Disease

*Referral to dermatology, allergy, multidisciplinary clinics*¹,²

- Multidisciplinary interventions show promise in improving adherence, disease control, and quality of life for patients with AD and their families²

AD is a Clinical Diagnosis

<table>
<thead>
<tr>
<th>Essential Features: Rajka-Hanifin Criteria (must be present)</th>
<th>Important Features (seen in most cases, adding support to the diagnosis)</th>
<th>Associated Features (suggestive of AD, but too nonspecific to be definitive on their own)</th>
<th>Exclusionary Conditions (diagnosis of AD depends on excluding these conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pruritus</td>
<td>• Early age of onset</td>
<td>• Atypical vascular response</td>
<td>• Scabies</td>
</tr>
<tr>
<td>• Eczema</td>
<td>• Atopy</td>
<td>• Keratosis pilaris</td>
<td>• Seborrheic dermatitis</td>
</tr>
<tr>
<td>• Typical morphology and age-specific patterns</td>
<td>• Personal and/or family history</td>
<td>• Ocular/periorbital changes</td>
<td>• Contact dermatitis</td>
</tr>
<tr>
<td>• Chronic or relapsing history</td>
<td>• Immunoglobulin E reactivity</td>
<td>• Perifollicular accentuation/lichenification/prurigo lesions</td>
<td>• Ichthyoses</td>
</tr>
<tr>
<td>• Xerosis</td>
<td></td>
<td></td>
<td>• Cutaneous T-cell lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Psoriasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Immunodeficiency disorders</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Erythroderma of other causes</td>
</tr>
</tbody>
</table>

Assessing Severity

• Severity determined by
 • Lesion thickness
 • Duration and intensity of pruritus
 • Body surface area involved
 • Impact on quality of life

Severity Scales

- >20 disease severity scales exist
- No “gold standard” scale
 - Most commonly used is the Scoring Atopic Dermatitis index (SCORAD)
- Others include:
 - Eczema Area and Severity Index (EASI)
 - Patient-Oriented Eczema Measure (POEM)
- Scales are used primarily in clinical trials
 - Rarely used in clinical practice

Example of AD Severity Scoring

<table>
<thead>
<tr>
<th>SCORAD Index</th>
<th>Objective Signs</th>
<th>Subjective Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORAD <25</td>
<td>Body surface area</td>
<td>Itch</td>
</tr>
<tr>
<td>SCORAD 25-50</td>
<td>Gradning of lesions: Erythema, Swelling, Crusting/oozing, Lichenification, Xerosis, Excoriation</td>
<td>Sleep loss</td>
</tr>
<tr>
<td>SCORAD >50</td>
<td></td>
<td>Sleep loss</td>
</tr>
</tbody>
</table>

Objective Signs
- Body surface area
- Grading of lesions: Erythema, Swelling, Crusting/oozing, Lichenification, Xerosis, Excoriation

Subjective Symptoms
- Itch
- Sleep loss

Treatment Goals

- Avoid trigger factors
- Minimize itching
- Reduce inflammation
- Reduce frequency and severity of exacerbations (flares)
- Minimize treatment-related adverse events
- Follow severity-directed treatment

Treatment Guidelines: American Academy of Dermatology (2014)

• Most current US-based guidelines
 • Recommendations also available from other sources (eg, AAAAI*)
• Includes guidance on
 • Diagnosis and assessment
 • Treatment with topical therapies, phototherapy, and systemic agents
 • Prevention of disease flares
• Recently approved agents (phosphodiesterase-4 and IL-4/IL-13 inhibitors) are not included

FROM THE ACADEMY

Guidelines of care for the management of atopic dermatitis

Section 1. Diagnosis and assessment of atopic dermatitis

Work Group: Co-chair, Lawrence F. Eichenfield, MD, *Wynnis L. Tom, MD, Sarah L. Chamlin, MD, MSCE, Steven R. Feldman, MD, PhD, Morgan H. Hanifin, MD, Eric L. Simpson, MD, Timothy G. Berger, MD, James N. Bergman, MD, David E. Cohen, MD, Kevin D. Cooper, MD, Kelly M. Cordon, MD, Dawn M. Davis, MD, Alfons Koel, MD, David J. Margolis, MD, PhD, Amy S. Paller, MS, MD, Kathryn Schwarzenberger, MD, Robert A. Silverman, MD, Hywel C. Williams, PhD, Craig A. Elmets, MD, Julie Block, BA, Christopher G. Harrod, MS, Wendy Smith Bogoika, MBS, and Co-chair, Robert Stulbury, MD

San Diego, San Francisco, and San Rafael, California; Chicago and Schaumburg, Illinois; Winston-Salem, North Carolina; Portland, Oregon; Vancouver, British Columbia, Canada; New York, New York; Cleveland, Ohio; Rochester, Minnesota; Philadelphia, Pennsylvania; Burlington, Vermont; Fairfax, Virginia; Nottingham, United Kingdom; Birmingham, Alabama; and Seattle, Washington

Atopic dermatitis (AD) is a chronic, pruritic, inflammatory dermatosis that affects up to 25% of children and 2% to 3% of adults. This guideline addresses important clinical questions that arise in the management and care of AD, providing updated and expanded recommendations based on the available evidence. In this first of 4 sections, methods for the diagnosis and monitoring of disease, outcomes measures for assessment, and common clinical associations that affect patients with AD are discussed. Known risk factors for the development of disease are also reviewed. (J Am Acad Dermatol 2014;70:338-51.)

Key words: assessment scales; atopic dermatitis; biomarkers; clinical associations; criteria; diagnosis; risk factors.

Perspectives on the New and Emerging Systemic Therapies

Traditional Systemics
- Non-specific agents
- Results in general immunosuppression
- Requires lab monitoring
- Risk of therapeutic toxicities
- Robust clinical trial data supporting their use is limited

New/Emerging Systemics
- Targeted biologic therapies
- Minimize general immunosuppression
- May not require lab monitoring
- Growing body of robust clinical trial evidence supporting their use
“...recommended for the subset of adult and pediatric patients in whom optimized topical regimens using emollients, topical anti-inflammatory therapies, adjunctive methods, and/or phototherapy do not adequately control the signs and symptoms of disease...”

• “...systemic immunomodulating agents may also be used in patients whose medical, physical, and/or psychological states are greatly affected by their skin disease, which may include negative impact on work, school performance, or interpersonal relationships.”

Candidates for Systemic Therapy

Is the diagnosis correct?

• Characteristics of patients who are candidates for systemic therapy
 • Itch that disrupts sleep
 • Low risk for opportunistic infections
 • Impaired quality of life

Have topical therapies failed?

Is the patient adherent to treatment?

Barriers to Treatment

<table>
<thead>
<tr>
<th>“Steroid Phobia”</th>
<th>Fear of Side Effects</th>
<th>Few Long-term Therapies</th>
<th>Poor Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Experienced by both patients and physicians</td>
<td>• Experienced by both patients and physicians</td>
<td>• Options for long-term treatment are limited by effectiveness, safety, and inconvenience</td>
<td>• To guidelines (physicians)</td>
</tr>
<tr>
<td>• Limits duration and intensity of treatment</td>
<td>• Boxed warnings on several therapies</td>
<td></td>
<td>• To prescribed therapy (patients and caregivers)</td>
</tr>
</tbody>
</table>

Treatment Dissatisfaction Often Leads to Poor Adherence

Complicated, Ineffective, and/or Inconvenient Regimens
Treatment-related AEs

Poor Adherence

- 44% of patients were dissatisfied with their AD treatment
- Satisfaction may be related to disease severity

Adherence assessed in 1327 patients with AD using the Morisky Medication Adherence Scale-8 (MMAS-8)

Assessment of Interventions to Improve Adherence

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Intervention</th>
<th>Assessment Tool</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rork et al. 2012</td>
<td>35</td>
<td>Written action plan</td>
<td>Survey of disease severity</td>
<td>Severity was decreased in 80% of patients whose parents utilized a written action plan</td>
<td>Adherence not measured directly; attributed severity improvement to better adherence</td>
</tr>
<tr>
<td>Moore et al. 2009</td>
<td>99</td>
<td>Nurse-led educational workshops</td>
<td>SCORAD Index</td>
<td>73% improvement in severity in the intervention group vs 40% in the control</td>
<td>Adherence not measured directly; attributed severity improvement to better adherence</td>
</tr>
<tr>
<td>Sagransky et al. 2010</td>
<td>20</td>
<td>Extra office visit each week</td>
<td>Medication Event Monitoring Systems (MEMS) cap</td>
<td>Decrease in adherence was less in the intervention group (-23%) vs control (-39%)</td>
<td>Direct measurement of dosing events recorded by MEMs cap</td>
</tr>
<tr>
<td>Grillo et al. 2006</td>
<td>61</td>
<td>Educational workshop (2 hour session)</td>
<td>SCORAD index</td>
<td>54% improvement in severity for the intervention group vs 16% in the control</td>
<td>Adherence not measured directly; attributed severity improvement to better adherence</td>
</tr>
<tr>
<td>Staab et al. 2002</td>
<td>204</td>
<td>Educational program (6 two-hour group sessions)</td>
<td>SCORAD index</td>
<td>Decrease in adherence was less in the intervention group (-7%) vs control (-25%)</td>
<td>Adherence measured directly by survey</td>
</tr>
</tbody>
</table>

Engaging the Patient: Atopic Dermatitis Action Plans

- Written plans can help patients understand how best to manage their AD\(^1\)
- Safeguards against medication errors and therapeutic toxicities\(^2\)
- Use of action plans have been shown to decrease disease severity\(^2\) and may increase adherence\(^3\)

Summary

• AD is a chronic relapsing-remitting inflammatory skin disease associated with a significant clinical, humanistic, and economic burden

• AD is a clinical diagnosis based on lesion thickness, duration and intensity of pruritus, body surface area involved, and impact on quality of life

• Treatment is dependent on disease severity, but no uniform measure of severity is currently available

• Treatment guidelines are available, but do not include recently approved therapies

• A multimodal, multidisciplinary approach to care may improve adherence and treatment outcomes
Targeted Therapies for the Treatment of Moderate-to-Severe Atopic Dermatitis

Alan Menter, MD
Chief, Division of Dermatology
Baylor University Medical Center
Learning Objectives

• Review recent insights into the pathophysiology of atopic dermatitis (AD)
• Discuss the safety, efficacy, and attributes of emerging therapies for the treatment of AD
AD is a Chronically Relapsing Inflammatory Skin Disease with a Profound Effect on Patient Quality of Life

- Most common skin disease worldwide\(^1\)
 - 15% to 30% global prevalence in children
 - Up to 10% prevalence in adults

- Heterogeneous clinical presentation\(^1,2\)
 - Intense, often unbearable itching
 - Chronic or recurring eczematous lesions

- Significantly impaired QoL\(^3\)
 - Disrupted sleep patterns
 - Increased rates of mental health disorders
 - Negative social, academic, occupational, and financial effects

AD Disease Manifestations are Influenced by Genetic, Immune, and Environmental Factors

- Genes linked to AD\(^1\)
 - *FLG*, a gene that encodes profilaggrin, a skin barrier protein
 - Genes that encode cytokines (e.g., IL-5, IL-12, IL-13)

- About 80% of patients with AD have personal or family history of atopy (elevated IgE)\(^2\)

- AD most often begins in early childhood and is often considered the first step in the “atopic march” to other allergic diseases such as allergic rhinitis and asthma\(^3\)

- However, evidence suggests atopy may be a downstream consequence, rather than a cause, of AD in genetically predisposed individuals\(^3\)

AD Has a Complex Pathogenesis Involving Epidermal Barrier Dysfunction and Immune-mediated Cutaneous Inflammation

- Barrier defects in non-lesional skin allow penetration of allergens
- Antigen-mediated T helper 2 (Th2) cell activation results in cytokine release (eg, IL-4, IL-5, IL-13), inflammatory cell recruitment, and increased IgE production
- IL-4 and IL-13 disrupt the skin barrier by decreasing expression of barrier proteins (eg, filaggrin)

AD Has a Complex Pathogenesis Involving Epidermal Barrier Dysfunction and Immune-Mediated Cutaneous Inflammation (cont’d)\(^1\)

- IL-23 stimulates production of Th17 and Th22 cells that release IL-17 and IL-22, respectively
 - IL-22 induces epidermal hyperplasia and in concert with IL-17, acts on terminal differentiation proteins that mediate itch
- Epithelial damage releases thymic stromal lymphopoietin (TSLP), IL-25, and IL-33, and these, along with IL-10, further drive Th2 differentiation
- In chronic AD, Th1 cells release interferon-\(\gamma\) and stimulate production of chemokines that lead to further support of inflammation and immune activation

Moderate-to-Severe AD Often Requires Intensive Therapy for Adequate Disease Control\(^1\)

Limitations with currently available therapies create a significant unmet need for safe, effective treatments for patients with moderate-to-severe AD\(^1\)

Systemic immunosuppressants\(^1,2\)
- Variable efficacy
- Tolerability issues and toxicity (e.g., nephrotoxicity) with long-term use

Topical corticosteroids\(^3\)
- Irreversible skin atrophy with long-term use
- Potential for adrenal suppression

Improved Understanding of AD Pathogenesis Has Led to New Treatment Strategies for Moderate-to-Severe Disease

Traditional systemic therapies

- Provide generalized immunosuppression (eg, corticosteroids), or
- Target end-product mediators of inflammation (eg, IgE, antihistamines)

Emerging biologics specifically target steps in the Th-2 pathway integral to AD pathogenesis

- IL-4-specific blockers
- Dual IL-4 and IL-13-specific blockers
- IL-13-specific blockers
- JAK-specific blockers
- IgE-specific mAbs
Several Targeted Agents Have Been Recently Approved or Are in Late-Stage Development for Treatment of AD1

<table>
<thead>
<tr>
<th>Agent</th>
<th>Trade Name</th>
<th>Target</th>
<th>Route</th>
<th>Clinical Trial Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4, IL-13</td>
<td>Dupilumab</td>
<td>IL-4, IL-13</td>
<td>SC</td>
<td>Approved</td>
</tr>
<tr>
<td></td>
<td>Dupixent</td>
<td>IL-4, IL-13</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tralokinumab</td>
<td>IL-13</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lebrikizumab</td>
<td>IL-13</td>
<td>SC</td>
<td>2</td>
</tr>
<tr>
<td>JAK</td>
<td>Tofacitinib</td>
<td>JAK1, JAK3</td>
<td>PO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xeljanz</td>
<td>JAK1, JAK3</td>
<td>PO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baricitinib</td>
<td>JAK1, JAK2</td>
<td>PO</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Olumiant</td>
<td>JAK1</td>
<td>PO</td>
<td>2</td>
</tr>
<tr>
<td>PDE-4</td>
<td>Crisaborole</td>
<td>PDE-4</td>
<td>Topical</td>
<td>Approved</td>
</tr>
<tr>
<td></td>
<td>Eucrisa</td>
<td>PDE-4</td>
<td>Topical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apremilast</td>
<td>Otezla</td>
<td>PO</td>
<td>2</td>
</tr>
</tbody>
</table>

Two of these new agents have received FDA approval for AD
- Dupixent (dupilumab)2
- Eucrisa (crisaborole)3

11 PDE=phosphodiesterase; JAK=Janus kinase; PO=oral; SC=subcutaneous.

Additional Agents in Development

<table>
<thead>
<tr>
<th>Agent</th>
<th>Trade Name</th>
<th>Target</th>
<th>Route</th>
<th>Clinical Trial Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other cytokines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ustekinumab</td>
<td>Stelara</td>
<td>IL-12, IL-23</td>
<td>SC</td>
<td>2</td>
</tr>
<tr>
<td>Secukinumab</td>
<td>Cosentyx</td>
<td>IL-17A</td>
<td>SC</td>
<td>2</td>
</tr>
<tr>
<td>ILV-094</td>
<td></td>
<td>IL-22</td>
<td>IV</td>
<td>2</td>
</tr>
<tr>
<td>Nemolizumab</td>
<td></td>
<td>IL-31RA</td>
<td>SC</td>
<td>2</td>
</tr>
<tr>
<td>IgE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligelizumab (QGE031)</td>
<td></td>
<td>IgE</td>
<td>SC</td>
<td>2</td>
</tr>
<tr>
<td>Omalizumab</td>
<td>Xolair</td>
<td>IgE</td>
<td>SC</td>
<td>2</td>
</tr>
</tbody>
</table>

IgE=immunoglobulin E; RA=receptor antagonist; SC=subcutaneous; IV=intravenous.

IL-4 Receptor α Chain (IL-4Rα) Inhibitor

Mechanism of action

- Binds to the IL-4 receptor α chain, a component of receptors for both IL-4 and IL-13
- Blocks both IL-4 and IL-13 signaling, key cytokines that drive Th2-mediated inflammation

Status

- Approved for adults with moderate-to-severe AD (Dupixent®, March 2017)
- In Phase 3 trials for pediatric AD

Dupilumab – An IL-4Rα Antagonist for AD

• Dupixent, Regeneron/Sanofi Genzyme
 • Fully human monoclonal antibody
 • IL-4Rα antagonist
 • Inhibits IL-4 and IL-13 signaling

• US Approval: March 2017

• Indication
 • Treatment of adult patients with moderate-to-severe atopic dermatitis whose disease is not adequately controlled with topical prescription therapies or when those therapies are not advisable

• Dosage and administration
 • Subcutaneous injection
 • 600 mg (two 300 mg injections in different injection sites), followed by 300 mg given every other week

• Dosage form and strength
 • Injection
 • 300 mg/2 mL solution in a single-dose pre-filled syringe with needle shield

Dupilumab – Safety Profile

• Warnings and precautions
 • Hypersensitivity
 • Discontinue treatment
 • Conjunctivitis and keratitis
 • Report new onset or worsening eye symptoms to HCP
 • Comorbid asthma
 • Advise patients with comorbid asthma not to adjust or stop their asthma treatment without consultation with their physicians

• Most common adverse reactions (≥1% incidence)
 • Injection site reactions
 • Conjunctivitis
 • Blepharitis
 • Oral herpes
 • Keratitis
 • Eye pruritus
 • Other HSV infection
 • Dry eye

Dupilumab – Pivotal Clinical Trials

• Approved based on 3 randomized, double-blind, placebo-controlled trials (Trials 1, 2, and 3):
 • 2119 subjects ≥18 years of age moderate-to-severe AD not adequately controlled by topical medications

• Treatment:
 • Placebo or dupilumab 600 mg at Week 0, followed by 300 mg Q2W
 • In Trial 3, subjects also received concomitant topical corticosteroids (TCS) or topical calcineurin inhibitors (TCI) for problem areas only

• Primary endpoint:
 • Change from baseline to Week 16 in the proportion of subjects with an IGA 0 (clear) or 1 (almost clear) and at least a 2-point improvement

• Other results:
 • Significant improvements vs placebo in EASI75, pruritus, and patient reported outcomes (eg, QoL)

Efficacy Results With or Without Concomitant TCS at Week 16

<table>
<thead>
<tr>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGA Responders*</td>
<td>IGA Responders*</td>
<td>IGA Responders*</td>
</tr>
<tr>
<td>Dupilumab (n=224)</td>
<td>Placebo (n=224)</td>
<td>Dupilumab (n=233)</td>
</tr>
<tr>
<td>38%</td>
<td>10%</td>
<td>36%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EASI-75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dupilumab (n=224)</td>
</tr>
<tr>
<td>51%</td>
</tr>
</tbody>
</table>

*Responder was defined as a subject with IGA 0 or 1 (“clear” or “almost clear”) with a reduction of ≥2 points on a 0-4 IGA scale.
IL-13 Receptor α Chain (IL-13Rα1, IL-13Rα2) Inhibitors

- **Mechanism of action**
 - Binds to the IL-13 receptor α chains 1 and 2 (IL-13Rα1 and IL-13Rα2) on B-cells and monocytes
 - Blocks IL-13 signaling, a key driver of Th2-mediated inflammation

- **Status: two monoclonal antibodies under investigation**
 - Phase 3: Tralokinumab
 - Phase 2: Lebrikizumab

Tralokinumab – Phase 2 Clinical Trial in Adults

• Design
 • Randomized, placebo-controlled, double-blind

• Patients
 • 204 adults with moderate-to-severe AD

• Treatment
 • Tralokinumab (45, 150, or 300 mg) or placebo by SC injection Q2W for 12 weeks

• Key efficacy results
 • Significant reduction in EASI scores
 • -15.7 tralokinumab 300 mg
 • -10.8 placebo; \(P=0.011 \)
 • Significant improvement in IGA success, EASI50, EASI75, and pruritus
 • Significant improvement in Dermatology quality of life index

• Primary endpoint: reduction in EASI

• Most common adverse reactions
 • Nasopharyngitis (17%), upper respiratory tract infection (9%), headache (6%) and AD (6%)

EASI=Eczema Area and Severity Index; EASI50=50% improvement in EASI; EASI75=75% improvement in EASI75; IGA=investigator global assessment; Q2W=every other week; SC=subcutaneous.

Lebrikizumab – Phase 2 Clinical Trial in Adults

• **Design**¹
 - Randomized, placebo controlled, double-blind trial

• **Patients**¹
 - 209 adults with moderate-to-severe AD

• **Treatment**¹
 - Lebrikizumab (125 mg) or placebo by SC injection Q4W for 12 weeks

• **Primary endpoint: EASI50**¹

• **Key efficacy results**¹
 - Significant improvement in EASI50 scores
 - 82.4% lebrikizumab
 - 62.9% placebo; *P*<0.05
 - Significant improvements in patient reported outcomes and trend toward improvement in EASI75, EASI90¹,²

• **Notable adverse reactions**²
 - Conjunctivitis
 - injection-site reaction

EASI=Eczema Area and Severity Index; EASI50=50% improvement in EASI; EASI75=75% improvement in EASI75; EASI90=90% improvement in EASI; IGA=investigator global assessment, Q4W=every four weeks; SC=subcutaneous; TCI=topical calcineurin inhibitors; TCS=topical corticosteroids.

Janus Kinase (JAK) Inhibitors

• **Mechanism of action**
 - JAK-STAT signaling is activated by IL-4, IL-5, and IL-13, and in turn up-regulates pro-inflammatory cytokines, activates eosinophils, and suppresses regulatory T cells
 - JAK inhibitors inhibit JAK-STAT signaling by preventing the phosphorylation and activation of STATs

• **Status**
 - Tofacitinib (Xeljanz) is an oral JAK1 and JAK3 inhibitor currently approved in the US for rheumatoid arthritis (RA) and in early testing for AD
 - Baricitinib and Pf-04965842 are JAK inhibitors in phase 2 trials for AD

Phosphodiesterase 4 (PDE-4) Inhibitors

Mechanism of action

- Modulates production of inflammatory cytokines (eg, IL-4, IL-5, IL-10, IL-13 and prostaglandin E2) by its action on cyclic adenosine monophosphate (cAMP)\(^1,2\)

- PDE-4 inhibitors increase intracellular cAMP levels, reduce release cytokine mediators, and mitigate inflammatory processes in AD\(^3\)

Status

- Crisaborole is a topical PDE-4 inhibitor that is approved for patients ≥2 years of age with mild-to-moderate AD\(^2\)

- Apremilast is an oral PDE-4 inhibitor in phase 2 testing for moderate-to-severe AD\(^4\)

ATP=Adenosine triphosphate; cAMP=cyclic adenosine monophosphate; IFN-γ=Interferon gamma; IL=Interleukin; NFAT=Nuclear factor of activated T cells; NF-κB=Nuclear factor κB; PDE4=Phosphodiesterase 4; PKA-c/r=cAMP-dependent protein kinase catalytic subunits c and r; TNF-α=Tumor necrosis factor alpha.
Crisaborole – The First PDE-4 Inhibitor Approved for AD

- **Eucrisa 2% ointment, Anacor Pharmaceuticals**
 - Small-molecule, boron-based, PDE-4 inhibitor
- **US Approval: December 2016**
- **Indication**
 - Topical treatment of mild-to-moderate AD in patients 2 years of age and older
- **Warnings and precautions**
 - Hypersensitivity reactions

- **Pivotal clinical trials**
 - In two clinical trials, 1522 subjects were randomized 2:1 to receive crisaborole or placebo twice a day for 28 days
 - The primary endpoint was ISGA success

- **Adverse reactions**
 - The most common AR occurring in ≥1% of patients is injection site pain

Primary Efficacy Outcomes in Subjects with Mild-to-Moderate AD at Day 29

<table>
<thead>
<tr>
<th></th>
<th>Trial 1</th>
<th></th>
<th>Trial 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crisaborole</td>
<td>Vehicle</td>
<td>Crisaborole</td>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>(N=503)</td>
<td>(N=256)</td>
<td>(N=513)</td>
<td>(N=250)</td>
<td></td>
</tr>
<tr>
<td>ISGA success</td>
<td>32.8%</td>
<td>25.4%</td>
<td>31.4%</td>
<td>18.0%</td>
</tr>
</tbody>
</table>

ISGA, investigator’s static global assessment. In two clinical trials, 1522 subjects were randomized 2:1 to receive crisaborole or placebo twice a day for 29 days. The primary endpoint was ISGA success, defined as a score of 0 (clear) or 1 (almost clear) with a ≥2 grade improvement over baseline.

Apremilast

- Otezla, Celgene

- Oral PDE-4 inhibitor approved for the treatment of adults with active psoriatic arthritis and for patients with moderate-to-severe plaque psoriasis and psoriatic arthritis\(^1\)

Phase 2 trial in moderate-to-severe AD\(^1\)

- Design: randomized, double-blind, placebo-controlled, parallel-group trial
- Patients: 191 adults with moderate-to-severe AD
- Treatment: apremilast (40 mg) or placebo twice daily for up to 24 weeks
- Primary endpoint: Percentage improvement in EASI at week 12
- Key efficacy result at week 12:
 - Apremilast: 31% reduction in EASI
 - Placebo: 11% reduction in EASI; \(P = 0.0347 \)

EASI=Eczema Area and Severity Index; IGA=investigator global assessment, Q4W=every four weeks; SC=subcutaneous; TCI=topical calcineurin inhibitors; TCS=topical corticosteroids.

Other Agents that Target Th2 Cytokines

<table>
<thead>
<tr>
<th>Agent</th>
<th>Description/mechanism of action</th>
<th>Results in AD clinical trials</th>
</tr>
</thead>
</table>
| **Ustekinumab (Stelara)** | • Monoclonal antibody approved for treatment of plaque psoriasis, psoriatic arthritis, and Crohn’s disease
 • IL-12/IL-23 inhibitor | • In 2 randomized controlled trials, treatment did not significantly improve AD disease severity |
| **Secukinumab (Cosentyx)** | • Monoclonal antibody approved for treatment of plaque psoriasis, psoriatic arthritis, and ankylosing spondylitis
 • IL-17 inhibitor | • Secukinumab is early in its AD testing program—a case report of secukinumab for treatment of AD has been published |
| **Fezakinumab (ILV-094)** | • Monoclonal antibody
 • IL-22 inhibitor | • In a randomized, controlled clinical trial of 60 patients with moderate-to-severe AD, patients treated with fezakinumab twice weekly had significantly better improvement in patient-reported outcome scores than patients treated with placebo |

<table>
<thead>
<tr>
<th>Agent</th>
<th>Description/mechanism of action</th>
<th>Results in AD clinical trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nemolizumab<sup>1</sup></td>
<td>• Monoclonal antibody • IL-31 receptor A (IL-31RA) inhibitor</td>
<td>• In a phase 2, randomized, double-blind, placebo-controlled trial of 216 adults with moderate-to-severe AD, a single subcutaneous dose resulted in ~50% improvement in pruritus and non-significant improvement is EASI score • AEs: exacerbation of AD, peripheral edema, nasopharyngitis • May eventually play an important role in treatment of pruritus associated with AD</td>
</tr>
<tr>
<td>Ligelizumab<sup>1</sup></td>
<td>• Monoclonal antibody • Anti IgE</td>
<td>• In a randomized, double-blind, placebo-controlled, proof of concept study, active treatment was not associated with a significant EASI score improvement</td>
</tr>
<tr>
<td>Omalizumab (Xolair)<sup>1,2</sup></td>
<td>• Monoclonal antibody approved for treatment of allergic asthma and chronic idiopathic urticaria • Anti-IgE</td>
<td>• Despite many studies, the appropriate clinical role of Xolair for AD yet to be determined because the agent has had inconsistent results in clinical trials • Currently undergoing a large phase IV study in pediatric patients with AD</td>
</tr>
</tbody>
</table>

Where Do Emerging Targeted Therapies Fit into the AD Treatment Algorithm?

Today¹,²

- **Mild potency TCS/TCI**
- **Moderate potency TCS/TCI**
- **High potency TCS/TCI**
- **Systemic therapy**

1. **1st line systemic therapy**

- **Currently, only one approved biologic – dupilumab³**
 - Indicated for treatment of adult patients with moderate-to-severe AD whose disease is **not adequately controlled with topical prescription therapies**
 - Practically, due to cost concerns, it may first be used in patients with persistent disease on current systemic immunosuppressants

As Additional Biologics Become Available and As We Gain Deeper Understanding of this Heterogeneous Disease . . .

..treatment will likely be better personalized by patient and disease characteristics

“It is unlikely that any single agent, class of agents, or therapeutic approach can be expected to be universally applicable treatments for all forms of AD. Instead, the choice of agents used in subsets of patients may be best guided by techniques that could include patient stratification based on biomarkers such as transcriptome analysis, immunohistochemistry, and serum cytokine profiling”
—Friedlander et al, 2016

Proactive Treatment Has the Potential to Result in Better Disease Control and Improved Quality of Life

- AD has traditionally been treated reactively, adjusting treatment as symptoms of disease severity change
- However, AD is a chronic systemic disease active even in the absence of symptoms
- Preventive therapy, scheduled intermittent therapy, and alternating therapy are examples of potentially viable approaches to keeping AD under control and preventing reappearance of symptoms while minimizing drug-related risk
- If targeted biologics prove to have fewer long-term toxicities with equal or better efficacy, they may remove a barrier to proactive systemic treatment for moderate-to-severe AD

Summary

• AD is a chronically relapsing inflammatory skin disease with a profound effect on patient quality of life

• AD has a complex pathogenesis involving epidermal barrier dysfunction and immune-mediated cutaneous inflammation

• Improved understanding of AD pathogenesis has led to targeted treatment strategies for moderate-to-severe disease

• A wide range of biologic agents are under investigation for treatment of AD

• The availability of targeted biologics may provide additional flexibility and personalization in the treatment in moderate-to-severe AD

• Proactive treatment has the potential to result in better disease control and improved quality of life
Benefit Design Strategies to Remove Barriers and Enhance Overall Value for the Treatment of Atopic Dermatitis

Jeffrey D. Dunn, PharmD, MBA
Vice President, Clinical Strategy and Programs and Industry Relations
Magellan Rx Management
Learning Objective

• Assess benefit design strategies to improve overall patient outcomes for AD
Current Issues

• Several new drugs have been recently approved or are currently in development for AD, including specialty agents (ie, biologics)

• Management of biologics for AD have many similarities to our experience with plaque psoriasis

• New specialty drugs for AD are also being studied for other disease states (eg, asthma)

• With a new AD specialty category, there are no contracts unless semi-open access
Sales of Specialty Drugs Continue to Increase

Projected Specialty Drug Spending from 2012 to 2020

Spending amounts is US$ billions

2012: $87.1
2016: $192.2 (121% increase from 2012)
2020 (projected): $401.7 (109% increase from 2016)

Background

- AD is a chronic pruritic inflammatory skin disease associated with elevated serum level of IgE and a personal or family history of atopy.
- Disproportionally more children (10-20%) are affected than adults (1-3%).
- Typically diagnosed in childhood.
- The AD that emerges in adults is often different than that in children.
- The incidence of AD appears to be increasing.

An estimated 1.6 million patients are expected to be eligible for new AD treatments

Cost of Treating AD

- **$30 per month**
 - Methotrexate
- **$150 per month**
 - Topical Corticosteroids
- **$500 per month**
 - Topical Immunosuppressants
- **$1,500-$2,500 per month**
 - Dupilumab (estimated)

AD Management Challenges

Top Challenges of Specialty Drugs (2016)

- Ensuring clinically appropriate use: 83%
- Determining value: 79%
- Expanding drug pipeline: 72%
- Coordinating across the medical and pharmacy benefit: 57%
- Improving adherence: 33%

Basic Tenets of a Benefits Plan Design

Manage costs by restricting resource (eg, drug) utilization

| Medical and pharmacy designs are usually independent |

Cost sharing is used to influence patterns of utilization

| Patient cost-share related to acquisition cost of the drug | Assumes an inelastic demand or willingness to pay |

Common Components of an AD Benefit Design

<table>
<thead>
<tr>
<th>Incentive Programs</th>
<th>Member</th>
<th>MD (P4P; differential reimbursement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Pharmacy Integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordination/Collaboration</td>
<td>Data management; increased use of IT</td>
<td></td>
</tr>
<tr>
<td>Case Management</td>
<td>Efforts to increase patient engagement in their own care</td>
<td></td>
</tr>
<tr>
<td>Patient Support Programs</td>
<td>Mandatory?</td>
<td>Use of manufacturer-provided program?</td>
</tr>
</tbody>
</table>
AD Pharmacy Benefit Design Considerations

<table>
<thead>
<tr>
<th>Benefit Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiers</td>
</tr>
<tr>
<td>Evaluation of out-of-pocket expenses and distribution</td>
</tr>
</tbody>
</table>

Application of Guidelines, Clinical Pathways, and/or Disease Management
Value = Cost Effectiveness

- Efficacy
- Price
- Cost per event avoided
- Cost per % improvement
- Helps compare agents
 - When there are no head-to-head trials

Cost Difference

\[
\begin{array}{c|c|c}
\text{C+} & \text{Intervention more effective and more costly than 0} & \text{Intervention more effective and more costly than 0} \\
\hline
\text{E-} & \text{(Clear Loser)} & \text{Intervention more effective and more costly than 0} \\
\hline
\text{0} & \text{Intervention less effective and less costly than 0} & \text{Intervention more effective and less costly than 0} \\
\hline
\text{E-} & \text{Intervention less effective and less costly than 0} & \text{(Clear Winner)} \\
\end{array}
\]
Formulary Management

More Formulary Control

<table>
<thead>
<tr>
<th>Need for data/Use of CER</th>
<th>Levels of evidence for PA</th>
<th>Quantity limits</th>
<th>Stop/start rules</th>
</tr>
</thead>
</table>

Contracts

| Work with manufacturers; Outcomes-based contracts | Net effective pricing |
Formulary Tiers

<table>
<thead>
<tr>
<th>Pharmacy Benefit Cost Sharing Design Overview</th>
<th>High-Deductible Plans (n=47)</th>
<th>Standard Deductible Plans (n=57)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of Plans</td>
<td>% of Lives</td>
</tr>
<tr>
<td>Traditional and specialty in the same tier</td>
<td>36%</td>
<td>21%</td>
</tr>
<tr>
<td>1-tier or 2-tier plans</td>
<td>29%</td>
<td>71%</td>
</tr>
<tr>
<td>3 or more tiers</td>
<td>71%</td>
<td>29%</td>
</tr>
<tr>
<td>Traditional and specialty in separate tiers</td>
<td>64%</td>
<td>79%</td>
</tr>
<tr>
<td>1 specialty tier</td>
<td>70%</td>
<td>62%</td>
</tr>
<tr>
<td>2 or more specialty tiers</td>
<td>30%</td>
<td>38%</td>
</tr>
</tbody>
</table>

Special Pharmacy Care Management

Program

• Specialty Pharmacy Medication Therapy Management (MTM)
 – Integration with Care Management
 – Coordinate site of care
 – Ensure appropriate dosing
 – Adherence
 – Patient education
 – Expectation management

Actions

• Design workflow and integration with Care Management
• Analyze drug utilization patterns to select targeted drugs/disease
• Train personnel
 – Specialty diseases
 – Medications
 – Site of care logistics
AD Pharmacy Management: Finding the Right Balance

- Drug Dispensing
- Specialty Drug Management
- Utilization Management
- Contracting Activities
- Coordination of Care
- Benefit Design (Cost Share) & Formulary
Summary

• Several novel agents to treat AD have been recently approved or are in late stage development.

• While the increasing number of treatment options is a great benefit to patients, providers, and payers, these same stakeholders are challenged by the acquisition cost and appropriate use of these therapies.

• New plan designs and care models that emphasize value over volume of care are being implemented to ensure patients continue to have access to these innovative therapies.